



#### PI5USB30213 Application Information Plug-in Detector for Type-C Connector with USB3.0 Switch Version 2.2

### **Table of Contents**

| 1     | Introduction                                            |
|-------|---------------------------------------------------------|
| 2     | Why need PI5USB30213 in USB3.1 Gen1 Type-C application3 |
| 2.1   | Type-C Port Channel Budget4                             |
| 2.2   | VCONN                                                   |
| 2.3   | USB3 SoC VBUS detection in DRP/UFP Mode5                |
| 3     | Processor Communication via I <sup>2</sup> C            |
| 3.1   | I <sup>2</sup> C Configuration Sequence                 |
| 3.2   | ENB pin and Power-On Sequence8                          |
| 3.3   | Power-Saving mode through I <sup>2</sup> C8             |
| 3.4   | I <sup>2</sup> C Register Quick Reference Table8        |
| 4     | Typical Application Circuit                             |
| 4.1   | DRP in I <sup>2</sup> C Mode                            |
| 4.2   | DFP Mode                                                |
| 4.2.: | 1 DFP in I <sup>2</sup> C Mode                          |
| 4.2.2 | 2 DFP (Default Current) in Pin Control Mode13           |
| 4.2.3 | 3 DFP Mode Design Note and Waveform14                   |
| 4.3   | Battery-Powered UFP Mode15                              |
| 4.4   | Bus-Powered UFP Mode15                                  |



| 5   | Layout Recommendation16                     |
|-----|---------------------------------------------|
| 5.1 | Power Decoupling Capacitor Recommendation16 |
| 5.2 | Layout Example16                            |
| 6   | Firmware Example                            |



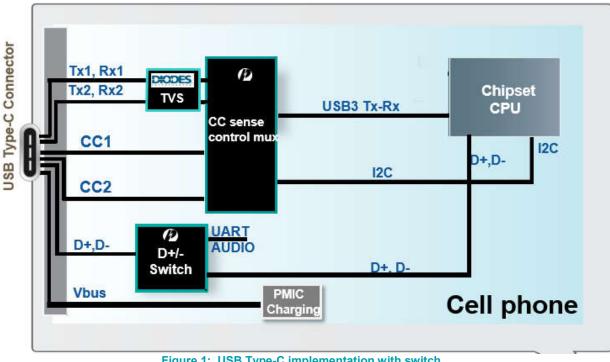
AN374 Application

#### 1 Introduction

Pericom's PI5USB30213 is a dual differential channel bi-directional Mux/Demux switch with plug-in detector for USB3.1 Gen1 (5.0 Gbps) Type-C connector.

The device includes:

- 1) The Plug-in Detector for Type-C connector (CC Sensing) a) Supports DFP/UFP/DRP/Try.SRC DRP/Try.SNK. DRP \*Does not support Bus-Powered UFP configuration
- 2) Integrated 2:1 USB3.0 Mux/DeMux
- a) Auto-configure ports orientation through CC sensing
- 3) Integrated VCONN switch to power active cables


The device implements CC pins for port attachment, detachment, cable orientation, role detection and Type-C Current Mode control. The device supports host mode, device mode and dual role mode ports with automatic configuration based on the voltage levels detected on CC pins. The device supports both pin and I<sup>2</sup>C control mode. I<sup>2</sup>C control mode allows higher flexibility for port control and communications.

#### Packaging: 24-contact TQFN (2mmx4mm)

#### 2 Why need PI5USB30213 in USB3.1 Gen1 Type-C application

USB Type-C connectors support flipping and swapping. Type-C Connector specification defined the new pin "CC" to resolve port roles and cable orientation to establish power routing and data bus routing. Please see Figure 1 below for the USB Type-C implementation with USB3 switch.

PI5USB30213 Type-C port controller detects and control CC1/2 pin and configure its integrated 2:1 USB3.0 Mux/DeMux automatically to establish USB3.0 data bus.





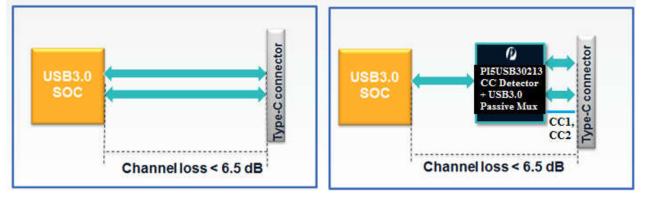
Page 3 of 19

AN374





#### 2.1 Type-C Port Channel Budget


For Type-C application, Host & device channel loss budget defined is 6.5dB @ 5Gbps by USB3.0 spec. (See below table from USB-IF development day slide)

### PCB routing estimates

|                                      | Type-A Port |           | Type-C Port |           |
|--------------------------------------|-------------|-----------|-------------|-----------|
|                                      | Baseline    | Best case | Baseline    | Best case |
| SS Gen 1 5Gbps Insertion Loss Budget | 10 dB       | 10 dB     | 6.5 dB      | 6.5 dB    |
| Gen 1                                | 10″         | 10″       | 5.5″        | 7″        |
| Gen 1 + DP 1.2 discrete MUX          |             |           | 4.0″        | 5.5″      |
| Gen 1 + DP 1.2 integrated MUX**      |             |           | 5.5"        | 7″        |

#### Table 1: USB3.0 Type-A Port vs Type-C Port channel loss budget

(1) If total channel loss from SOC to end connector is less than 6.5dB→ use PI5USB30213



### Figure 2: USB3.0 Type-C application needs passive Mux if total channel loss from SOC to end connector is less than 6.5dB.

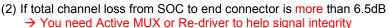





Figure 3: USB3.0 Type-C application needs active Mux if total channel Loss from SOC to end connector is more than 6.5dB.



#### 2.2 VCONN

In non USB Power Delivery (USB-PD) application,

- a) VCONN support is a must in USB3 Source/DRP to power active cable per USB Type-C spec
- b) VCONN support is not needed in USB3 UFP
- c) VCONN support is optional in USB2 Type-C application

The VCONN source requirement is below:

|                  | Minimum | Maximum | Notes                                                                                                                                                    |
|------------------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage          | 4.75 V  | 5.5 V   | Ports that support VCONN-powered<br>accessories are allowed to supply at<br>a lower minimum of 2.7 V when<br>operating in the PoweredAccessory<br>state. |
| Power            | 1.0 W   |         | Source may latch-off VCONN if<br>excessive power is drawn beyond<br>the specified inrush and mode<br>wattage.                                            |
| Bulk Capacitance | 10 µF   | 220 µF  | The VCONN source shall disconnect<br>the bulk capacitance from the<br>receptacle when VCONN is powered<br>off.                                           |

| Table 4-3 | VCONN | Source | Characteristics |
|-----------|-------|--------|-----------------|
|           |       |        |                 |

Figure 4: VCONN Source requirement. Reprinted from USB Type-C Connector Spec 1.1.

#### 2.3 USB3 SoC VBUS detection in DRP/UFP Mode

Per Type-C spec recommendation, USB3.1 SuperSpeed shall hold off VBUS detection to the device controller until PI5USB30213 has reported host/DFP attachment (PI5USB30213 in "attached.SNK" state) via I2C. Otherwise, it may connect as USB2.0 when attached to a legacy host or hub's DFP.





#### **3** Processor Communication via I<sup>2</sup>C

ADDR is used to set I<sup>2</sup>C address as below. Please noted that PI5USB30213 does not have offset byte\*. All registers must be read or written sequentially from 0x01. For example, in order to read address 0x04, PI5USB30213 I<sup>2</sup>C registers must be read sequentially from 0x01, 0x02, 0x03 to 0x04. In order to write address 0x02, it must be written sequentially from 0x01 to 0x02.

\*Please use "I<sup>2</sup>C Transport" API to communicate with PI5USB30213 if needed.

| ADDR pin                           | I <sup>2</sup> C address format | I <sup>2</sup> C address |  |
|------------------------------------|---------------------------------|--------------------------|--|
| ADDR=GND                           | 7-bit addressing                | 0x0D                     |  |
|                                    | 8-bit address                   | Write:0x1A; Read:0x1B    |  |
| ADDR=VDD                           | 7-bit addressing                | 0x2D                     |  |
| ADDR=VDD                           | 8-bit address                   | Write:0x5A; Read:0x5B    |  |
| Table 2: I2C Slave Address Setting |                                 |                          |  |

Processor shall use following procedure to process PI5USB30213 interrupt request:

- 1. INTB asserted LOW, indicating Type-C port status change.
- 2. Processor first masks PI5USB30213 interrupt by writing a '1' to Bit 0 of Control Register(0x02). INTB returned Hi.
- 3. Processor then read Register(0x01), Control Register (0x02), Interrupt Register(0x03) and CC Status Register(0x04). Interrupt Register(0x03) indicates if an attach or detach event was detected. All interrupt flags in Interrupt Register will be cleared after the I2C read action. CC Status Register(0x04) is used to determine plugin details and charging profile. Processor can configure the power and USB channels according to information in CC Status Register.

Processor unmask PI5USB30213 interrupt by writing a '0' to Bit 0 of Address 0x02 before ending the interrupt service routine.

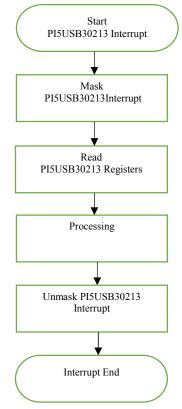



Figure 5: Suggested Flow of Processor Communication with PI5USB30213 via I<sup>2</sup>C Control Mode



AN374

#### 3.1 I<sup>2</sup>C Configuration Sequence

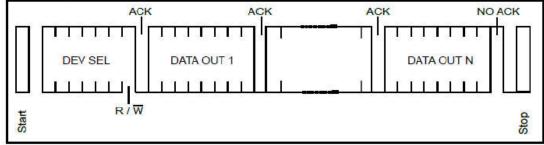
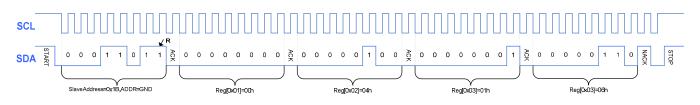




Figure 6: READ Sequence Diagram

Figure 7 below is one example for read sequence at ADDR=GND and Data Reg [1:4]=00,04,01,06.



#### Figure 7: I<sup>2</sup>C Read Sequence Sample

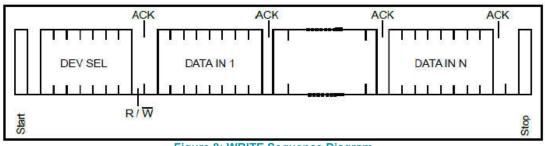



Figure 8: WRITE Sequence Diagram

Figure 9 below is one example for write sequence at ADDR=GND and Data Reg [1:2]=00,05.

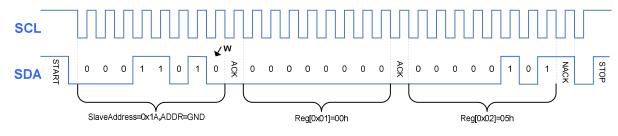



Figure 9: I<sup>2</sup>C WRITE Sequence Sample



#### 3.2 ENB pin and Power-On Sequence

ENB pin shall be pin controlled in DRP/UFP application. When power-on, ENB pin of PI5USB30213 shall be float or connected to VDD to ensure CC1 and CC2 are pulled low by PI5USB30213 built-in Rd and the port acts as a Sink during Power-On Reset (POR). As a reset, the port would not accidentally detach any connected Type-C host when power-on and disturb VBUS supply from the Type-C host. PI5USB30213 is reset only by POR.

Please also note that, PI5USB30213 in DRP mode comes up as a Unattached.SRC when ENB pin is pulled down after power-on. This may detach an already connected Type-C host. To avoid this, user may connect PORT pin to GND and PI5USB30213 shall always initialized as a Sink after power-on and user can change the mode through I<sup>2</sup>C afterwards.

#### 3.3 Power-Saving mode through I<sup>2</sup>C

User can put PI5USB30213 into low power state by writing a '1' to Bit 7 of Reg [0x02] with ENB pin is pulled low. User can re-enable the part through the I<sup>2</sup>C by writing a '0' to Bit 7 of Reg[0x02].

#### 3.4 I<sup>2</sup>C Register Quick Reference Table

| Reg[0x02] | PI5USB30213 Operating Mode                            | CC1/2 voltage when<br>unattached | ID pin             |
|-----------|-------------------------------------------------------|----------------------------------|--------------------|
| 00h       | Sink/UFP; No accessory support                        | GND                              | "H"                |
| 01h       | Sink/UFP; No accessory support; Mask Interrupt        | GND                              | п                  |
| 02h       | Source/DFP; Default USB Power                         | VDD                              |                    |
| 03h       | Source/DFP; Default USB Power; Mask Interrupt         | VDD                              |                    |
| 04h       | DRP; Default USB Power                                | Toggle between VDD and           |                    |
| 05h       | DRP; Default USB Power; Mask Interrupt                | GND                              |                    |
| 06h       | Try.SRC DRP; Default USB Power                        | Toggle between VDD and           |                    |
| 07h       | Try.SRC DRP; Default USB Power; Mask Interrupt        | GND                              |                    |
| 0Ah       | Source/DFP; 1.5A Type-C Current Mode                  | VDD                              |                    |
| 0Bh       | Source/DFP; 1.5A Type-C Current Mode; Mask Interrupt  | VDD                              |                    |
| 0Ch       | DRP; 1.5A Type-C Current Mode                         | Toggle between VDD and           |                    |
| 0Dh       | DRP; 1.5A Type-C Current Mode; Mask Interrupt         | GND                              |                    |
| 0Eh       | Try.SRC DRP; 1.5A Type-C Current Mode                 | Toggle between VDD and           | "I" la a .a        |
| 0Fh       | Try.SRC DRP; 1.5A Type-C Current Mode; Mask Interrupt | GND                              | "L" when<br>UFP is |
| 12h       | Source/DFP; 3A Type-C Current Mode                    | VDD                              | attached           |
| 13h       | Source/DFP; 3A Type-C Current Mode; Mask Interrupt    | VDD                              | allaciicu          |
| 14h       | DRP; 3A Type-C Current Mode                           | Toggle between VDD and           |                    |
| 15h       | DRP; 3A Type-C Current Mode; Mask Interrupt           | GND                              |                    |
| 16h       | Try.SRC DRP; 3A Type-C Current Mode                   | Toggle between VDD and           |                    |
| 17h       | Try.SRC DRP; 3A Type-C Current Mode; Mask Interrupt   | GND                              |                    |
| 46h       | Try.SNK DRP; Default USB Power                        | Toggle between VDD and           |                    |
| 47h       | Try.SNK DRP; Default USB Power; Mask Interrupt        | GND                              |                    |
| 4Eh       | Try.SNK DRP; 1.5A Type-C Current Mode                 | Toggle between VDD and           |                    |
| 4Fh       | Try.SNK DRP; 1.5A Type-C Current Mode; Mask Interrupt | GND                              |                    |
| 56h       | Try.SNK DRP; 3A Type-C Current Mode                   | Toggle between VDD and           |                    |
| 57h       | Try.SNK DRP; 3A Type-C Current Mode; Mask Interrupt   | GND                              |                    |
| 20h       | Sink/UFP; Support accessory                           | Toggle between VDD and           | "H"                |
| 21h       | Sink/UFP; Support accessory; Mask Interrupt           | GND                              |                    |

 Table 3: Control Register (Reg[0x02]) Quick Reference Table



| Reg[0x03]                                                     | PI5USB30213 Attach/Detach Event and VCONN switch status                                    |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| 00h                                                           | No attach or detect event occurred since last I <sup>2</sup> C read.                       |  |  |
| 01h                                                           | Attach event occurred since last I <sup>2</sup> C read.                                    |  |  |
| 02h                                                           | Detach event occurred since last I <sup>2</sup> C read.                                    |  |  |
| 04h                                                           | Fault is occurring for VCONN switch detector. If not use VCONN, please ignore it.          |  |  |
| 08h                                                           | OTP event, VCONN Over-temperature protection detected. If not use VCONN, please ignore it. |  |  |
| 20h                                                           | OVP event, VCONN Over-voltage protection detected. If not use VCONN, please ignore it.     |  |  |
| 40h                                                           | OCP event, VCONN Over-current protection detected. If not use VCONN, please ignore it.     |  |  |
| 80h                                                           | Fault condition recovery.                                                                  |  |  |
| Table 4: Interrupt Pagister (PagI0x021) Quick Pafarance Table |                                                                                            |  |  |

Table 4: Interrupt Register (Reg[0x03]) Quick Reference Table

| Reg[0x04] | Type-C Port Status                                                                | Plug<br>Position | CC1 Voltage                                                       | CC2 Voltage                                                       | ID |
|-----------|-----------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----|
| 00h       | Unattached; The port shall not drive VBUS.                                        | -                | -                                                                 | -                                                                 | Н  |
| 04h       | Attached.SRC state but the connected CC pin is shorted to GND.                    | -                | -                                                                 | -                                                                 | L  |
| 05h       | Attached to a Sink/UFP;<br>The port shall drive VBUS.                             | CC1              | Default Host:<br>0.41V<br>1.5A Host:<br>0.92V<br>3A Host:<br>1.7V | VCONN<br>voltage                                                  | L  |
| 06h       | Attached to a Sink/UFP;<br>The port shall drive VBUS.                             | CC2              | VCONN<br>voltage                                                  | Default Host:<br>0.41V<br>1.5A Host:<br>0.92V<br>3A Host:<br>1.7V | L  |
| 0Fh       | Attached to an audio accessory. *4                                                | Accessory        | 0.08V                                                             | 0.08V                                                             | н  |
| 13h       | Attached to a debug accessory. *4                                                 | Accessory        | 0.4V                                                              | 0.4V                                                              | Н  |
| 8Fh       | Attached to a charge-through audio accessory                                      | Accessory        | 0.08V                                                             | 0.08V                                                             | н  |
| 93h       | Attached to a debug accessory with VBUS detected. *4                              | Accessory        | 0.4V                                                              | 0.4V                                                              | н  |
| A8h       | Attached to a Host; CC pin is detached.<br>Check cable connection. *1             | -                | -                                                                 | -                                                                 | н  |
| A9h       | Attached to a Host; *1                                                            | CC1              | 0.4V                                                              | -                                                                 | Η  |
| AAh       | Attached to a Host; *1                                                            | CC2              | -                                                                 | 0.4V                                                              | Н  |
| C8h       | Attached to a Host; CC pin is detached.<br>Check cable connection. * <sup>2</sup> | -                | -                                                                 | -                                                                 | н  |
| C9h       | Attached to a Host; *2                                                            | CC1              | 0.92V                                                             | -                                                                 | Н  |
| CAh       | Attached to a Host; *2                                                            | CC2              | -                                                                 | 0.92V                                                             | Н  |
| E8h       | Attached to a Host; CC pin is detached.<br>Check cable connection. * <sup>3</sup> | -                | -                                                                 | -                                                                 | н  |
| E9h       | Attached to a Host; *3                                                            | CC1              | 1.7V                                                              | -                                                                 | Н  |
| EAh       | Attached to a Host; *3                                                            | CC2              | -                                                                 | 1.7V                                                              | Н  |

 Table 5: CC Status (Reg[0x04]) Quick Reference Table

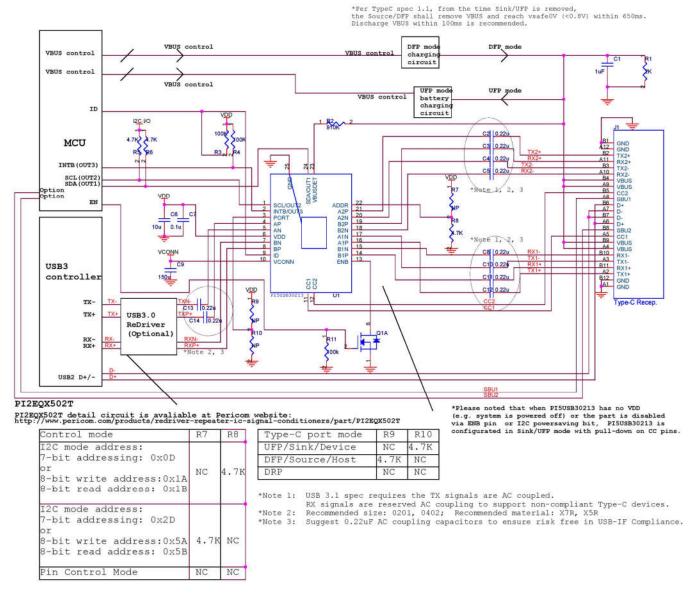
Page 9 of 19





Note

- \*1: The port shall draw no more than the default USB power from VBUS.
- \*2: The port shall draw no more than 1.5A from VBUS.
- \*3: The port shall draw no more than 3A from VBUS.
- \*4: According to Type-C spec 1.1, the port shall not drive VBUS.
- \*5: The port shall not sink more than 500mA from VBUS.



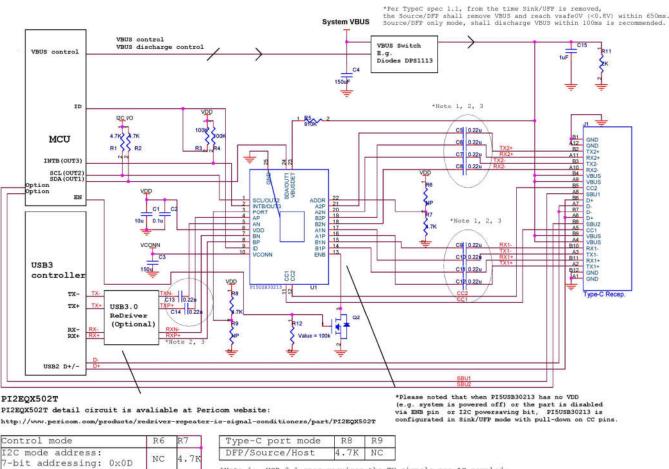

#### 4 Typical Application Circuit

#### 4.1 DRP in I<sup>2</sup>C Mode

Figure 10 shows a typical DRP mode Type-C configuration. Please noted that when PI5USB30213 has no power (e.g. the system is powered off) or the part is disabled via ENB pin or I2C powersaving bit, PI5USB30213 is configured automatically in Sink/UFP mode with pull-low on CC pins.

Per USB Type-C specification, VCONN source requires 10uF-220uF bulk capacitance. Per USB Type-C specification, system should discharge VBUS to <0.8V within 650ms after sink is detached.




#### Figure 10: Typical Application Circuit of PI5USB30213 DRP I<sup>2</sup>C Mode



#### 4.2 DFP Mode

#### 4.2.1 DFP in I<sup>2</sup>C Mode

Figure 11 shows a typical Source/DFP mode Type-C configuration. Per USB Type-C specification, system should discharge VBUS to <0.8V within 650ms after sink is detached. In Source/DFP only mode, shall discharge VBUS within 100ms.



| Control mode                                | Re   | R/  |
|---------------------------------------------|------|-----|
| I2C mode address:<br>7-bit addressing: 0x0D | NC   | 4.7 |
| I2C mode address:<br>7-bit addressing: 0x2D | 4.7K | NC  |
| Pin Control Mode                            | NC   | NC  |

 
 DFP/Source/Host
 4.7K
 NC

 \*Note 1:
 USB 3.1 spec requires the TX signals are AC coupled. RX signals are reserved AC coupling to support non-compliant Type-C devices.

 \*Note 2:
 Recommended size: 0201, 0402; Recommended material: X7R, X5R

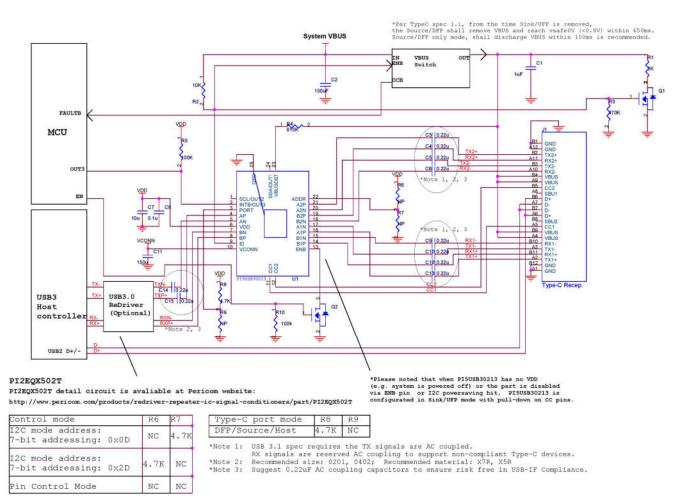

 \*Note 3:
 Suggest 0.22uF AC coupling capacitors to ensure risk free in USB-IF Compliance.

Figure 11: Typical Application Circuit of PI5USB30213 DFP I<sup>2</sup>C Mode

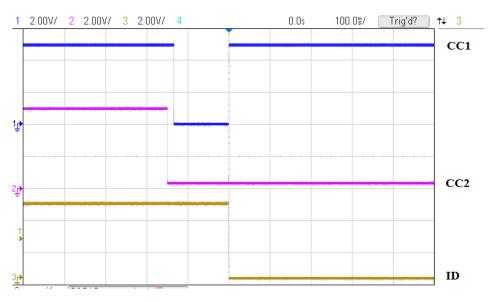


#### 4.2.2 DFP (Default Current) in Pin Control Mode

Figure 12 shows a Source/DFP default current mode Type-C configuration. In Source/DFP only mode, shall discharge VBUS within 100ms.



#### Figure 12: Typical Application Circuit of PI5USB30213 DFP Pin Control Mode




#### 4.2.3 DFP Mode Design Note and Waveform

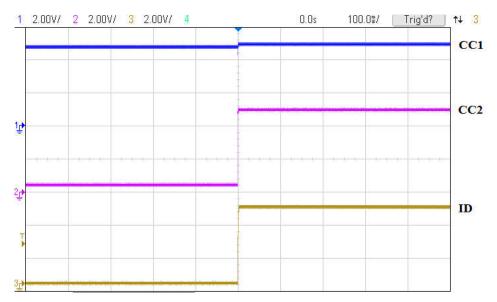
Please noted that when PI5USB30213 has no power (e.g. the system is powered off) or the part is disabled via ENB pin or I2C powersaving bit, PI5USB30213 is configured automatically in Sink/UFP mode with pull-low on CC pins.

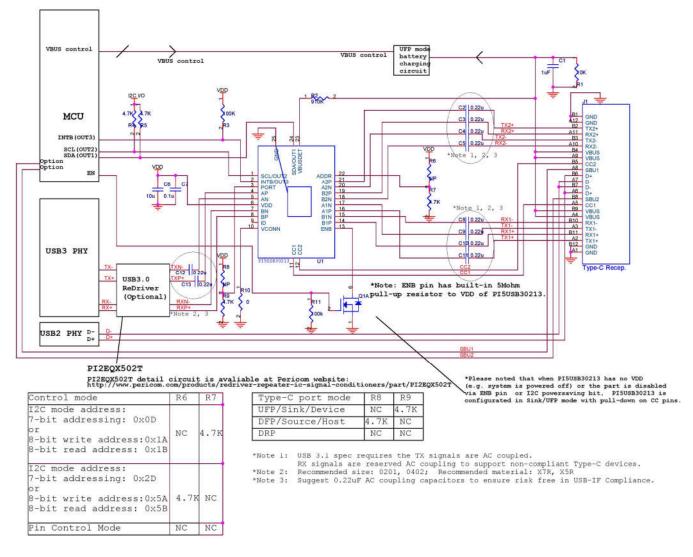
A 150uF is used to meet USB2 DFP bulk capacitance requirement (minimum 120uF).

Per USB Type-C specification, VCONN source requires 10uF-220uF bulk capacitance. The USB Type-C specification also has VBUS turn-on and turn-off timing requirement. Please refer to the USB Type-C specification for details.









Figure 14: Application Waveform for DFP mode. Once device is detached, ID pin is released to high.





#### 4.3 Battery-Powered UFP Mode

Figure 15 shows a typical Battery-Powered UFP mode Type-C configuration.





#### 4.4 Bus-Powered UFP Mode

Not supported



#### 5 Layout Recommendation

#### 5.1 Power Decoupling Capacitor Recommendation

At least 1pc 4.7uF and 1pc 0.1uF decoupling capacitors are recommended for VDD of PI5USB30213. Each decoupling capacitor should be connected to PCB power plane via shortest path. VDD and GND pins should be shorted to PCB power planes via shortest paths.

At least 1uF decoupling capacitor is recommended at VBUS.

#### 5.2 Layout Example

#### Typical application Layout suggestion

- □ Use 6/7/6 mils for trace-space-trace for the micro-strip lines (the traces on top and bottom layers) for 90ohm differential impedance.
- □ Use 6/5/6 mils for trace-space-trace for the strip-lines (the traces inside layers) for 90ohm differential impedance.
- Use FR4.
- Using standard 4 to 8 layers stack-up with 0.062 inch thick PCB.
- □ For micro-strip lines, using ½ OZ Cu plated is ok.
- For strip-lines in 6 plus players, using 1 OZ Cu is better.
- □ The trace length miss-matching shall be less than 5 mils for the "+" and "-" traces in the same pairs
- □ More pair-to-pair spacing for minimal crosstalk Target differential Zo of 900hm ±15%

The PCB layout recommended:

- Use 0.1uf in size of 0402 for all the Vdd (any power pins) pins of the IC device, as close to the Vdd pins as possible, within 2-3mm if feasible.
- Use dedicated Vdd and GND planes for to minimize the jitters coupled between channel trough power sources

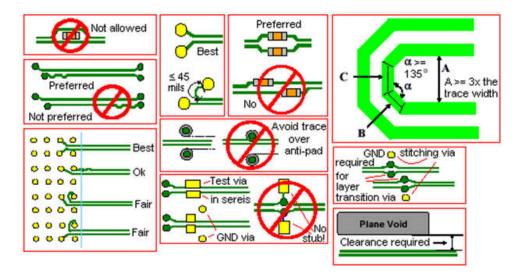
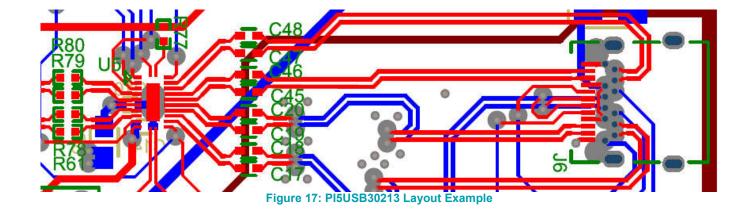




Figure 16: The Layout Guidance for the trace routings







{



#### 6 Firmware Example

bool vconn\_flag = FALSE; //Global Variable for VCONN function flag. char i2c\_read\_buf[4]={0x00,0x00,0x00,0x00}; char i2c\_write\_buf[2]={0x00,0x00};

void PI5USB30213\_INTN\_handler (void)

char vconn\_status = 0x00; //Variable for VCONN switch status; char int\_status = 0x00; //Interrupt status; char cc\_status =0x00; char port\_status=0x00; char control status;

pi5usb30213\_i2c\_read(pi5usb30213\_slaveAddr, i2c\_read\_buf, 4); //Read PI5USB30213 registers when Interrupt occurred

control\_status=i2c\_read\_buf[1];

if(vconn\_flag)

//if vconn\_flag is TRUE, means VCONN connected to 5V power supply, and PI5USB30213 will control the vconn switch and monitor switch status.

| (                                     |                                                                              |
|---------------------------------------|------------------------------------------------------------------------------|
| $vconn_status = i2c_read_but$         | f[2];                                                                        |
| if(vconn_status&0x80) pr              | rintf("PI5USB30213 recover from fault condition.\n");                        |
| if(vconn_status&0x40) pr              | rintf("PI5USB30213 OCP event, VCONN Over-current protection detected. If not |
| use VCONN, please ignore it.\n");     |                                                                              |
| if(vconn status&0x20) pr              | rintf("PI5USB30213 OVP event, VCONN Over-voltage protection detected. If not |
| use VCONN, please ignore it.\n");     |                                                                              |
| if(vconn_status&0x08) pr              | rintf("PI5USB30213 OTP event, VCONN Over-temperature protection detected. If |
| not use VCONN, please ignore it.\n"); |                                                                              |
| if(vconn status&0x04) pr              | rintf("PI5USB30213 Fault is occurring for VCONN switch detector. If not use  |
| VCONN, please ignore it.\n");         |                                                                              |
|                                       |                                                                              |

```
}
```

{

```
int_status = i2c_read_buf[2];
if(int_status&0x02)
{
        printf("Unpluged.\n");
        switch_off_VBUS_PWR();
                                           //CPU switch off the VBUS power supply when port unpluged
if(int status&0x01)
                          printf("Plug in.\n");
cc status = i2c read buf[3];
if(cc status&0x01)
                          printf("CC1 connected.\n");
if(cc status&0x02)
                          printf("CC2 connected.\n");
port_status = (i2c_read_buf[3] >> 2)\&0x07;
if((cc_status&0x01)|(cc_status&0x02))
{
        switch(port_status)
```



```
{
                 case 1:
                          printf("Device plug in.\n");
                          switch_on_VBUS_PWR(); //CPU switch on the VBUS power supply when UFP/Device plug in
                          break;
                 case 2:
                          printf("Host plug in.\n");
                         break;
                 case 3:
                          printf("Audio Adapter Accessory plug in.\n");
                          break;
                 case 4:
                          printf("Debug Accessory plug in.\n");
                          break;
                 default:
                          break;
                 }
        if(i2c read buf[3]==0x04)
                                                    //special process for PI5USB30213
                 ł
                          i2c write buf[1]=0x01;
                          pi5usb30213 i2c write(pi5usb30213 slaveAddr,i2c write buf,2);
                          delay(30);
                          i2c write buf[1]=control status;
                          pi5usb30213 i2c write(pi5usb30213 slaveAddr,i2c write buf,2);
                          delay(10);
                 }
void Initial_prog(void)
        vconn flag = TRUE; //If vconn connected to 5V power supply, vconn flag set to TRUE.
```

set ENB low(); //Enable the PI5USB30213 when ENB pin by GPIO control i2c write buf[1]=0x01; //Support DRP/DFP/Try.SNK DRP/Try.SRC DRP mode //i2c write buf[1]=0x05; //Support UFP mode pi5usb30213 i2c write(pi5usb30213 slaveAddr,i2c write buf,2); delay(30);i2c write buf[1]=0x04; //Support DRP mode with default current mode //i2c write buf[1]=0x46; //Support Try.SNK DRP mode pi5usb30213\_i2c\_write(pi5usb30213\_slaveAddr,i2c\_write\_buf,2);

}

}

ł

AN374

Application\_N