Not Recommended for New Design, Use PI3EQX7741AI



A product Line of Diodes Incorporated

## PI3EQX7502AI

5.0Gbps, 1-port, USB3.0 ReDriver™

#### Features

- → USB 3.0 compatible
- → Full Compliancy to USB3.0 Super Speed Standard
- → Two 5.0Gbps differential signal pairs
- → Adjustable Receiver Equalization
- → 100Ω Differential CML I/O's
- → Pin Configured Output Emphasis Control
- → Input signal level detect and squelch for each channel
- → Automatic Receiver Detect with digital enable/disable
- → Low Power : ~330mW
- → Auto "Slumber" mode for adaptive power management
- → Stand-by Mode Power Down State
- → Industrial Temp Support (-40°C to 85°C)
- → Single Supply Voltage: 3.3V
- → Packaging: 24-Pin TQFN (4x4mm) (ZD)

#### Figure1



# Description

The PI3EQX7502AI is a low power, high performance 5.0 Gbps signal ReDriver<sup>™</sup> designed specifically for the USB 3.0 protocol. The device provides programmable equalization, De-Emphasis, and input threshold controls to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI3EQX7502AI supports two 100Ω Differential CML data I/O's between the Protocol ASIC to a switch fabric, over cable, or to extend the signals across other distant data pathways on the user's platform. The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. A low-level input signal detection and output squelch function is provided for each channel. Each channel operates fully independently. When the channels are enabled EN  $x^{\#} = 0$  and operating, that channels' input signal level (on xI+/-) determines whether the output is active. If the input signal level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage. In addition to signal conditioning, when EN  $x^{\#} = 1$ , the device enters a low power standby mode. The PI3EQX7502AI also includes a fully programmable receiver detect function. When the RXD-EN pin is pulled high, automatic receiver detection will be active. The receiver detection loop will be active again if the corresponding channel's signal detector is idle for longer than 7.3mS. The channel will then move to Unplug Mode if load not detected, or it will return to Low Power Mode (Slumber Mode) due to inactivity.

## **Block Diagram**



#### Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
  Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.</li>





# Pin Diagram (Top Side View)



## **Pin Description**

| Pin #                     | Pin Name      | Туре   | Description                                                                                                                                                                                                                                                       |
|---------------------------|---------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>17                   | EQ_A<br>EQ_B  | Input  | Set the equalization of two channels. These are Tri-level input pins. When set to "HIGH" the pin becomes Logic "1"; when set to "open", the pin becomes "open", when set to "low", the pin becomes logic "0". Please refer to Mode Adjustment on page 3.          |
| 10                        | EN_A#         | Input  | Channel A Enable. When the pin is driven "Low" Channel A is in normal operation. When the pin is driven "High", Channel A is in power down mode. With internal 200k $\Omega$ pull-down resistor.                                                                  |
| 21                        | EN_B#         | Input  | Channel B Enable. When the pin is driven "Low" Channel B is in normal operation. When the pin is driven "High", Channel B is in power down mode. With internal $200k\Omega$ pull-down resistor.                                                                   |
| 9                         | RXA+          |        |                                                                                                                                                                                                                                                                   |
| 8                         | RXA-          | Input  | CML input channels. With Selectable input termination between 50 $\Omega$ to internal V <sub>bias</sub> and                                                                                                                                                       |
| 19                        | RXB+          | input  | $60$ K $\Omega$ to GND. The input pins are pin polarity reversible.                                                                                                                                                                                               |
| 20                        | RXB-          |        |                                                                                                                                                                                                                                                                   |
| 22                        | TXA+          |        |                                                                                                                                                                                                                                                                   |
| 23                        | TXA-          | Output | Selectable output termination between 50 $\Omega$ to internal V <sub>bias</sub> and 2k $\Omega$ to internal V <sub>bias</sub> .                                                                                                                                   |
| 12                        | TXB+          |        | The output pins are pin polarity reversible.                                                                                                                                                                                                                      |
| 11                        | TXB-          |        |                                                                                                                                                                                                                                                                   |
| 4, 6,7, 14,<br>15, 18, 24 | DNC           | DNC    | Do Not Connect                                                                                                                                                                                                                                                    |
| 1<br>13                   | VDD33         | Power  | 3.3V Voltage Supply                                                                                                                                                                                                                                               |
| Center Pad                | GND           | GND    | Supply Ground.                                                                                                                                                                                                                                                    |
| 3<br>16                   | DE_A,<br>DE_B | Input  | Set the de-emphasis of the output CML buffer. These are Tri-level input pins. When set to "high", the pin becomes logic "1"; when set to "open", the pin becomes "open"; when set to "low", the pin becomes logic "0". Please refer to Mode Adjustment on page 3. |
| 5                         | RxD_EN        | Input  | Set the state of receiver detection of two channels. "Low" means no receiver detection and "high" means the receiver detection is active. With internal $200k\Omega$ pull-up resistor.                                                                            |





## **Power Management**

Notebooks, netbooks, and other power sensitive consumer devices require judicious use of power in order to maximize battery life. In order to minimize the power consumption of our devices, Diodes has added an additional adaptive power management feature. When a signal detector is idle for longer than 1.3ms, the corresponding channel will move to low power mode ONLY. (It means both channels will move to low power mode individually).

In the slumber mode, the signal detector will still be monitoring the input channel. If a channel is in slumber mode and the input signal is detected, the corresponding channel will wake-up immediately. If a channel is in slumber mode and the signal detector is idle longer than 6ms, the receiver detection loop will be active again. If load is not detected, then the Channel will move to Device Unplug Mode and monitor the load continuously. If load is detected, it will return to Slumber Mode and receiver detection will be active again per 6ms.

The device can also be forced into low power standby mode through the use of the EN\_x# pins however this would require the use of GPIO pins to control.

# **Configuration Table**

| EN_x# | R <sub>X</sub> D_EN | Function                                                               | Input R                     | Output R  |
|-------|---------------------|------------------------------------------------------------------------|-----------------------------|-----------|
| 1     | Х                   | Channel disable if both EN_A#, EN_B# are high, chip is<br>Powered Down | $60k\Omega$ to GND          | Hi-Z      |
| 0     | 1                   | Chip and channel enabled, receiver detect is active                    | $50\Omega/60k\Omega$ to GND | 50Ω / 2kΩ |
| 0     | 0                   | Chip and channel enabled, receiver detect is not active                | 50Ω                         | 50Ω       |

\* Refer to pin 19 description

# Mode Adjustment

#### **Equalization Setting:**

EQ\_A/B are the selection pins for the equalization selection for each direction.

| Equalizer setting |               |  |
|-------------------|---------------|--|
| EQ_A/B            | @ 2.5GHz      |  |
| 0                 | 3 dB          |  |
| open              | 6dB (Default) |  |
| 1                 | 9dB           |  |

### **De-emphasis Setting:**

DE\_A/B are the selection pins for the de-emphasis selection for each direction.

| Output de-emphasis setting |                   |  |
|----------------------------|-------------------|--|
| DE_A/B                     | De-emphasis       |  |
| 0                          | 0 dB              |  |
| open                       | -3.5 dB (default) |  |
| 1                          | -6 dB             |  |



Note:



PI3EQX7502AI

# **Maximum Ratings**

(Above which useful life may be impaired. For user guidelines, not tested.)

| , ,                                | <b>3</b>                 |
|------------------------------------|--------------------------|
| Storage Temperature                | 65°C to +150°C           |
| Supply Voltage to Ground Potential | 0.5V to +4.6V            |
| DC SIG Voltage                     | $-0.5V$ to $V_{DD}+0.5V$ |
| Output Current                     | 25mA to +25mA            |
| Power Dissipation Continuous       | 1.0W                     |
| Operating Temperature              | 40°C to +85°C            |
| ESD, Human Body Model              | 7kv to +7kV              |
| ESD, Machine Model                 | 200V to +200V            |
|                                    |                          |

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

# **RECOMMENDED OPERATING CONDITIONS**

| Symbol                 | Parameter           | Conditions                                 | Min.     | Тур.     | Max.     | Units |
|------------------------|---------------------|--------------------------------------------|----------|----------|----------|-------|
| DEVICE PARAMET         | ERS                 |                                            |          | ·        |          |       |
| maximum date rate      |                     |                                            |          |          | 5        | Gbps  |
| t <sub>ENB</sub>       | Device enable time  | ENA/B# H->L<br>with Rx termination present |          | 10       | 50       | ms    |
| t <sub>DIS</sub>       | Device disable time | ENA/B# L->H                                |          | 7        |          | ns    |
| CONTROL LOGIC          |                     |                                            |          |          |          |       |
| I <sub>IH</sub>        | Input High Current  |                                            |          |          | 50       | A     |
| I <sub>IL</sub>        | Input LOW Current   |                                            | -50      |          |          | uA    |
| Bi-level Cotrol Pins ( | Pin 5, 10, 21)      |                                            |          |          |          |       |
| V <sub>IH</sub>        | Input High Voltage  |                                            | 0.65Vdd  |          |          | V     |
| V <sub>IL</sub>        | Input Low Voltage   |                                            |          |          | 0.35Vdd  | V     |
| Tri-level Control Pin  | s (Pins: 2,3,16,17) |                                            |          |          |          |       |
| V <sub>IH</sub>        | Input High Voltage  |                                            | 0.8Vdd33 |          |          |       |
| V <sub>IL</sub>        | Input Low Voltage   |                                            |          |          | 0.2Vdd33 | V     |
| V <sub>I mid</sub>     | Input Mid Level     |                                            | 0.4Vdd33 | 0.5Vdd33 | 0.6Vdd33 |       |

# **AC/DC Electrical Characteristics**

| Symbol                        | Parameter                    | Conditions                                     | Min. | Тур. | Max. | Units |
|-------------------------------|------------------------------|------------------------------------------------|------|------|------|-------|
| 3.3V Power Suppl              | y Characteristics            |                                                |      |      |      |       |
| V <sub>DD33</sub>             | Power Supply Voltage         |                                                | 3.0  |      | 3.6  | V     |
| P <sub>STANDBY33</sub>        | Supply Power Standby         | EN_[A:B]# = 1                                  |      | 0.15 | 1.8  |       |
| P <sub>SLUMBER33</sub>        | Supply Power Slumber         | EN_ [A:B]# = 0, No Input Signal                |      | 58   | 65   |       |
| P <sub>DEVICE_UNPLUG</sub>    | Supply Power Device Unplug   | EN_[A:B]# = 0, Output unterminated             |      | 7.3  |      |       |
| P <sub>ACTIVE33</sub>         | Supply Power Active          | $EN_{A:B} \# = 0, V_{RX-DIFF-P} \ge V_{TH-SD}$ |      | 328  | 450  |       |
| I <sub>DD-STANDBY33</sub>     | Supply Current Standby       | $EN_{A:B} = 1$                                 |      |      | 0.5  | mA    |
| I <sub>DD-SLUMBER33</sub>     | Supply Current Slumber       | EN_ [A:B]# = 0, No Input Signal                |      |      | 18   | mA    |
| I <sub>DD-DEVICE_UNPLUG</sub> | Supply Current Device Unplug | EN_[A:B]# = 0, Output unterminated             |      | 2.2  |      |       |
| I <sub>DD-ACTIVE33</sub>      | Supply Current Active        | $EN_x # = 0, V_{RX-DIFFP-P} \ge V_{TH-SD}$     |      |      | 125  |       |





# AC/DC Electrical Characteristics Cont.

| Symbol                           | Parameter                                            | Conditions                                                                                                      | Min. | Тур. | Max. | Units |
|----------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Receiver AC/D                    | C                                                    |                                                                                                                 |      |      |      |       |
| V <sub>RX-DIFFP-P</sub>          | Differential Peak-to-Peak Input<br>Voltage           | AC coupled differential RX peak to peak signal                                                                  | 175  |      | 1200 | mVppd |
| V <sub>RX-C</sub>                | Common Mode Voltage                                  |                                                                                                                 |      | 1    |      | V     |
| V <sub>cm_ac</sub>               | RX AC Common Mode Voltage                            | Measured at Rx pins with termination enabled                                                                    |      |      | 150  | mVP   |
| Z <sub>DC_RX</sub>               | DC commmon mode inpedance                            |                                                                                                                 | 18   |      | 30   |       |
| Z <sub>diff_RX</sub>             | DC differential input impendance                     |                                                                                                                 | 72   | 100  | 120  |       |
| Z <sub>RX_HIGH_</sub><br>IMP+    | DC Input high impedance                              | Device in unplug, standby modes RX<br>termination not powered measured<br>with respect to GND over 500mV<br>max |      | 67   |      | kΩ    |
| DI                               | Differential actions la se                           | 50 MHz-1.25GHz                                                                                                  |      | 23   |      | 11.   |
| RL <sub>RX-DIFF</sub>            | Differential return loss                             | 1.25 GH-2.5 GHz                                                                                                 |      | 13   | 1    | db    |
| RL <sub>RX-CM</sub>              | Common mode return loss                              | 50 MHz-2.5 GHz                                                                                                  |      | 8    |      | db    |
| TH-SD                            | Signal detect Threshold                              | $EN_x = 0$                                                                                                      | 50   |      | 175  | mVppd |
| Transmitter O                    | utput AC/DC (100 $\Omega$ differential) <sup>1</sup> |                                                                                                                 |      |      |      |       |
| V <sub>TX-DIFFP-P</sub>          | Differential Peak-to-peak Output<br>Voltage          | $V_{TX-DIFFP-P} = 2 *  V_{TX-D+} - V_{TX-D-} $                                                                  | 400  |      | 1200 | mVnnd |
| V <sub>TX-LFPS</sub>             | LFPS Differential Peak-to-peak<br>Output Voltage     |                                                                                                                 | 800  |      |      | шурра |
| V <sub>TX-C</sub>                | Common-Mode Voltage                                  | $ V_{TX-D+} + V_{TX-D-} /2$                                                                                     | 0.5  |      | 1.2  | V     |
|                                  |                                                      | DEA/B = 0                                                                                                       |      | 0    |      |       |
| DE                               |                                                      | DEA/B = NC                                                                                                      | -3.0 | -3.5 | -4.0 | dB    |
|                                  |                                                      | DEA/B = 1                                                                                                       |      | -6.0 |      |       |
| Z <sub>diff_TX</sub>             | DC differential impedance                            |                                                                                                                 | 72   | 90   | 120  |       |
| Z <sub>CM_TX</sub>               | DC common mode impedance                             | Measured w.r.t to AC ground over<br>0-500mV                                                                     | 18   | 23   | 30   | Ω     |
| DI                               |                                                      | f= 50MHz-1.25 GHz                                                                                               |      | 12   |      | 10    |
| KLdiff_TX                        | Differential return loss                             | f= 1.25 GHz-2.5 GHz                                                                                             |      | 8    |      | aв    |
| RL <sub>CM_TX</sub>              | Common mode return loss                              | f= 50 MHz-2.5GHz                                                                                                |      | 10   |      | dB    |
| I <sub>TX_SC</sub>               | TX short circuit current                             | TX± shorted to GND                                                                                              |      | 26   |      | mA    |
| V <sub>TX_CM_AC_</sub><br>Active | TX AC common mode voltage active                     |                                                                                                                 |      | 30   | 100  | mVpp  |





# **AC/DC Electrical Characteristics Cont.**

| Symbol                                         | Parameter                                    | Conditions                                                          | Min. | Тур. | Max. | Units             |
|------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|------|------|------|-------------------|
| Transmitter Ou                                 | utput AC/DC (100Ω differential) <sup>1</sup> |                                                                     |      |      |      |                   |
| V <sub>detect</sub>                            | Voltage change to allow receiver             | Positive voltage to sense receiver ter-<br>mination                 |      |      | 600  | mV                |
| t <sub>R</sub> ,t <sub>F</sub>                 | Output rise/fall time                        | 20%-80% of differental voltage mea-<br>sured 1" from the output pin |      | 90   |      | ps                |
| T <sub>diff_LH</sub> ,<br>T <sub>diff_HL</sub> | Differential propagation delay               | Propagation delay between 50% level at input and output             |      | 305  | 370  | ps                |
| Equalization                                   |                                              |                                                                     |      |      |      |                   |
| $T_{\text{TX-EYE}}^{(1)(2)}$                   | Total jitter(Tj)                             |                                                                     |      | 0.2  | 0.5  | <b>T TT</b> (3)   |
| $DJ_{TX}^{(2)}$                                | Deterministic jitter(Dj)                     | with 36 inch of inputFR4 trace                                      |      | 0.1  | 0.3  | 01 <sup>(3)</sup> |
| $RJ_{TX}^{(2)(4)}$                             | Random jitter(Rj)                            |                                                                     |      | 0.09 | 0.2  | РР                |

6

#### Note:

1.Includes RJ at 10<sup>-12</sup> BER

2.Determininstic jitter measured with PRBS7 pattern, Random jitter measured with 1010 patter VID=1000mVpp, 5Gbps,

3.UI = 200ps

4.Rj calculated as 14.069 times the RMS random jitter for 10<sup>-12</sup> BER





# **Eye Diagram**



Left: Input Eye Diagram, Left: Output Eye Diagram, Trace length: 36-inch, 5.0 Gb/s







Test Condition Referenced in the Electrical Characteristic Table



**PI3EQX7502AI Application Schematics** 





# Packaging Mechanical: 24-TQFN (ZD)



17-0533

#### For latest package info.

 $please \ check: \ http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-pericom-packaging-packaging-pericom-packaging-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-pericom-packaging-packaging-pericom-packaging-packaging-pericom-packaging-pericom-packaging-packaging-pericom-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-pac$ 

# **Ordering Information**

| Ordering Number  | Package Code | Package Description                            |
|------------------|--------------|------------------------------------------------|
| PI3EQX7502AIZDEX | ZD           | 24-Contact, Very Thin Quad Flat No-Lead (TQFN) |
| TISLOW/SOZAILDLA |              |                                                |

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm
- antimony compounds. 4. E = Pb-free and Green

5. X suffix = Tape/Reel





#### IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

#### LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com